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ABSTRACT

Let F(x) a f 1x + f 2x2 
+ ... be a formal power series over a field ~~ •

Let F~
01 (x) x and for q — 1,2,..., define F~~

3 (x) F~~~~
3(F(x)). The

obvious algorithm for computing the first n terms of F~~~(x) is by the com-

position analogue of repeated squaring. This algorithm has complexity about

log2 
q times that of a single composition. Brent showed that the factor log2 

q

can be eliminated in the computation of the first n terms of (~(~))~ by a

change of representation, using the logarithm and exponentia~ functions. We

show the factor log2 q can also be eliminated for the composition problem.

can often, but not always, be defined for more general q.

We give algorithms and complexity bounds for computing the first n terms of

F~~
1(x) whenever it is defined.

We conclude the paper with some open problems.

Keywords

Composition, fast algorithms, formal power series, symbolic computation,

generalized composition, functional equations, Schroeder function , iteration,

j s imilarity transformations .
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1.1

1. INTRODUCTION

Let

(1.1) F(x) f1x + f 2x2 
+

be a formal power series over a field ~~. Let Ft°J (x) — x and for q — 1,2 , . ..,

define the g..composite of F by

(1.2) P~~
3 (x) —

Let 11(x) be the reversion of F(x), i.e., the power series inverse to F(x)

under composition. For q — 1,2,..., define

(1.3) ~~
C-

~~~] (~~ ) —

As we shall see below, the q—composite of F can often (but not always)

be defined for more genera]. q. If q is not an integer, we shall call F~~~(x)

a generalized g-composite. We confine ourselves to the case that F~~~(x)

is a power series. One important special case of generalized composition is

q — l/r, where r is an integer . Then G — Ft 1~
/’r] (X) is an rth root of F

under composition, and satisfies the equation G~~
3(x) — F (x) .

Let

~14) Tn(~~ 
— f

1x + ... + ~~~~

(1.5) G(x) — F~~~ (x) — g 1x + g2x
2 

+

(1.6) G
0

(x) — g
1x + ... + g~x .

Given q and F~(x), we want to compute G~ (x ) .

_ _ _ _ _  _ _ _ _ _  

_ 
_ _ _ _ _ _ _ _ _
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1.2

In this paper we shall g ive algorithms and complexity bounds for com-

puting G ( X) whenever it is defined . For integer q these algorithms are

asymptotically faster  than the obvious algorithms.

We discuss the last point. Let COMP1(n) denote the complexity of com-

puting the firs t n terms of F(F (x)), and let q be a power of two. Then the

obviou s algorithm for computing G~ (x) is by the composition analogue of

“repeated squaring” , and has complexity COMP 1(n) lg q. (We shall denote

log2 
by 1g.) Can we eliminate the multiplicative factor of lg q?

An analogous problem is that of computing Rn (X)
~ 

the f irst  n terms of

(P( x)) ’~. Asymptotically in n , the complexi ty of forming Rn (X) is the same

as the compLexity of a single multiplication of two polynomials of degree n .

This follows from the observation that if A(x ) is a power series with constan t

term unity, then (A(~))~ a exp (q in A(x)) . This may be viewed as a change of

representation of A (x) to a new representation where multiplication is rep laced

by addition, followed by the inverse change of representation. Brent C76]

showed that the change of representation could be computed “fast”.

This suggests asking whether there is a change of representation which

reduces composition to multiplication. We shall see that there is, at least in

the “regular” case (see Section 3). Furthermore, the change of representation

can be computed “fast”. This enables us to eliminate the multiplicative factor

of ig .~~~ 
In addition we shall show (Sections 4-6) that even in the “non—

regular” cases we can still eliminate this factor. A bonus is that our algo-

rithms apply for non-integer q (so long as F~~
1(x) is a well-defined power

series).

The problem of composition and generalized composition occurs in many

applications including asymptotic analysis, difference equations, numerical 

- •. 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~, ~~~~~~~~~~~~~~~~~~
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1.3

analysis , and dynamical systems. See , fo r example , Aczel [66], Cherry [64) ,

de Bruijn [70] ,  Henrici [74) ,  Knuth [69), Kuczuia [68], Lavy and Lesst~ari

[6 1), and Melzak [73] .  The study of composition (often called iterat ion)

may be viewed as a major sub—field of mathematics. See Aczel [66] ,  Gross

[72 ] ,  and Kuczma [68 ] for very extensive bib l iographies. However , little

attention seems to have been given to the development of algorithms for c om-
puting F t

~~~(x) when F (x) is a given power series .

The following conventions are adopted below. We deal with formal power

series ; that is , we do not concern ourselves with convergence. Power series are

denoted by upper case letters such as A (x) or simply A,with coefficients

denoted by the corresponding lower case letters such as ai . If

A( x) — ekx
k 

+ ak+lx
’
~~~ + .. .,a,~ ~ 0, th en ord(A) k. It is convenient to

define ord(O) — ~~. If ord(B-C) � k we write B C + O(xk ) .  The polynomial

b 0 + b 1x + ... + ~~~1~
k-l is denoted either by B(x) mod or by Bk_ l (x) .

It is convenient to define ‘~(n ,q) — O(8(n ,q) ) to mean

~~(n ,q) I �K ~~6 (n ,q) j for all sufficiently large integer a and for all q

under consideration.

We s~~~ari ze the remainder of the paper . Our complexity model is

specified in Section 2. In Section 3 we study the “regular” case when the

multiplier f1 is such that f 1 ~ 0, f~ ~ 1, a a 1,2 In the following

three sections we consider the cases f 1 — 0; f 1 — 1; f~ — 1, integer a > I ,

but ~ 1, respectively.

In each of Sections 3, 4 , and 5 we define an “auxiliary” function , demon-

strate it can be computed fast by “divide and conquer”, and show how it can

be used to compute ~~~~~ The case studied in Section 6 can be reduced to

that of Section 5. In the concluding section we state a theorem (Theorem 7.1)

suemarizing our results, StatS the defin~ag equations for all cases , and s~ention

some open problems.

-a . - --. . .— - - - —
~~
- — a-
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2.1

2. COMPLEXITY MODEL

In this section we state our complexity model and sunsuarize the complexity

results needed below. We assume that scalar arithmetic operations are performed

exactly and have unit cost. Thus our time bounds are invalid if , for example ,

exact rational arithmetic is used. However, our algorithms should still be

useful in this case.

Given power series A(x) and 3(x), the time required to compute A(x)3(x) mod x~

is denoted by MTJLT(n). If ord(B) � 1, the time required to compu te A (B(x)) mod x~
is denoted by COMP(n). We assume that MULT(n) and CO~~(n) satisfy certain

plausible regularity conditions (see Brent and Kung [76 , Section 1]). Then

Brent and Kung [76] show

(2.].) C014P(n) O(min(n(~~~~
’2,(n Ig n)1/2~flILT (n) ) )

if matrix multiplication has complexity O(n r ) .  If the f ield A is such that

fast algorithms like the FFT are available, then

(2.2) MULT(n) — O(n lg a)

(see Borodin and Munro [75]), and it follows from (2.1) that

3/2(2.3) COMP(n) — O((n lg a) ).

The bounds in this paper will be expressed in terms of the complexity

function
Us aJ

(2.4) CO~~2 (n) — ~ 2~ COMP( r2~~ 1).
j — O

- Th_ ~~~~
_____ _ 

-



2.2

Assume

(2.5) COMP(n) _..aas(n) ,

where a � 1, and s(n) is a monotonic increasing positive function. For

example, s(n) might be (ig n)~ for some constant 3 � 0. Then

O(COMP ( n ) ) ,  if a >  I
(2.6) COMP (a) —

2 O (COMP (n)lg a), if a — I

If the field A is such that (2.3) holds , then a � 3/2 . If this is best pos-

sible , then COMP
2(n) may be replaced by O(COMP(n)) in our bounds.

If a — 1. and. ~ is a fixed integer, then “repeated squaring” is asymp-

totically faster than our algorithms . Of course , if q is not an int~ger ,

then “repeated squaring” is not ~~i alterna t ive to our algorithms . If a > I,

our result (that we can eliminate the multiplicative factor of Ig q) holds

for all fields of characteristic zero and all finite fields of characteristic

p greater than a.

If f~ is defined , we denote the complexity of computing f~ by POW!R(q).

If q is a positive integer , then POWER(q) — O(lg q).

In Brent (76] it is shown that the complexity of computing la(l+A(x))mod x~

is OcMuLr (n)) for any power series A ,  ord(A) > 0. Using 3rent ’ s results it

can be shown that the complexity of computing (3(x) ) 4 mod x~ is

O(MULT(n) + PO WER (q)).  By Brent and Kun g (76 , Leimna 4 .2 )  MIILT (a ) a O( COMP ( a)) ,

so we can absorb MULT(n) into COMP(n) in our analyses.

—~~~~ —--- ,— - .  - __________________- •___‘•.-l..,-
____•____ ,- — - —, - - — .- - - -•
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2.3

Recall that COMP 1(n) was defined as the complexity of computing the

f i rs t  a terms of F(F ( x ) ) .  It can be shown , by means s imilar to the proof

of Brent and Kung [76] that the complexity of reversion and composition

are asymptotically equa l , that C~ 1P(n) — O(COMP 1(n ) ) .

- - - — _____
~w_____
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3.1

3. THE REGULA.R CASE

In this section we study the computation of F~~~(x) when f1 ~ 0, f~ ~ 1,

m — 1,2 We call this the regular case. Define the Schroeder function

S(x) by

(3.1) S(F(x)) — f 1S(x) ,  ord(S) — I , s~ —j .

S(x) exists and is unique (Schroeder [1871], Kuczma

(68 , Chapter 6]) .  See also Parker [77] .  It is easy to prove that , fo r all

integer q,

(3.2) ~~~~~~~ — S~~~~ (f ~ S( x ) ) .

S(x) and St 1
~~(x) p lay the role that the logarithm and exponential functions

play in computing (~(~))~ fast. They reduce self-composition to scalar

powering. Note also the analogy with diagonalizing a matrix by a similarity

trans formation.

If q is not an integer but q and the scalar f 1 are such that f~ is

def ined , then (3.2) may be usect to define F~~
1. We shall use the “divide and conquer”

strategy to compute S(x) fast and then show how to compute from (3.2)

in total t ime O (COMP2 (a) + PCMER(q)).

Although we wish to solve the functional equation (3.1) , to make the

“divide and conquer” ~~‘ategy work we embed (3.1) in the more general linear

functional equation

(3.3) A(x)W(F(x)) - B(x)W(x) - C(x) — 0,

where W is the unknown. Note that this equation includes reversion as a

sp.cial case. The “divide and conquer” algorithm introduced to solve (3.3)

- _ _ _ _ _ _ _ _ _ _ _ _

- -



3.2

may therefore be used to revert power scries. This algorithm is different

from the one derived by Newton iteration and given in Brent and Kung r76~ .

L e a  3.1 gives the basis for a “divide and conquer” algorithm f or solving

(3.3). The proof is by substitution. L e a  3.2 gives sufficient conditions

for the existence of a formal solution, and Lemma 3.3 gives an upper bound

on the time required to compute an approximate solution.

Lennsa 3.1

If a , p are non-negative integers , ord(T ) ~ 1,

(3.4) A(x)U(F(x)) - B(x)U(x) - C(x) — X R(X)

and

(3.5) A (x)(F(x)/x)~ V (F(x)) - B (x)V(x) + R(x)  — O(x ~’) ,

then

(3. 6) A (x)W(P (x) ) - B (x)W(x) - C(x) — O(x~’~~ )

where

(3. 7) W(x) — U (x) + X
n
V (X). U

Remark 3.1

If Le a 3.1 is applied for a — p 2~ , 
~ 

— 0,1,2,..., we have an algo-

rithm for approximating W(x) which is quadratically convergent in the sense

of Kung and Traub [76]. U

L e a  3.2

If or d (F) ~ 1,

(3.8) a0f~ ~ b0 for all a — 1,2 ,3 ,...

--- - -.



3.3

and

(3.9) a0 
— b0 implies c0 

— 0

then there is a formal power series W, satisfying (3.3) , with ord cW) — 0 unless

— 0 and a
0 ~ b0

.

Proof.

We shall construct w0, w1,... such that W(x) — L w~x~ satisfies (3.3).

We let

(3.10) W (x) — ~~

j — O

and show by induction on a that, for some power series

(3.11) A(x )W (F (x) ) - B (x)W
m

(x) - C (x) — x~~
1
R~~1(x) 

— O(x~~~).

Let

I i f a  — b
(3 .12) w — 

0 0
~ c0/(a0-b0) otherwise

Then (3.11) holds for a — 0 , start ing the induction. Assuming that (3.11)

holds for a � 0 , we define

R ~(0)
‘3 13’ w —

‘ m+1 b0
—a 0

i
1

and apply Le~~a 3.1 (with a — ml-]., p 1 U — Wa~ 
V — w~~1) to deduce that

(3.11) holds with a replaced by m+l. Thus, the result follows by induction

on m. U

_____________________- -- . ~~~~~~~~~~~~~~~~~~~~~~~



3.4

Lemma 3.3

Suppose that w0,... ~w~_1 can be found in time t(n) whenever the condi-

tions of Lemma 3.2 apply. Then

(3.14 ) t (2n) � 2t(n) + COMP (2n) + O(MULT(n)).

Proof

In time t(n) we find u0,...,u~~1 such that (3.4) holds for some power

series R(x) , where U(x) — 

:~
:ujxi . Co~~ute U(F (x) ) mod in time C~~ P(2n) ,

and then find

(3.15) R(x) — 
A (x)U(F (x)) - 3(x)U(x) - C(x) mod

in time 0 (MULT (a)) .  [~ ote: MUtT (Zn) 0 (MUtT (a)) . ]

Since ord(F) � I , F(x)/x is a power series, and by an algorithm given

in Brent [76] we can compute (F(x)/x)~ mod x
tl
, and thus

(3.16) ~(x) — A(x)(F (x)/x)~ mod

in time O(MUL T(n) ) . Now (3.5) with p — a is just

Z’(x)V(F(x)) - 3(x)V(x) + R(x) O(xt5 ,

so we can find 
~O ’ • • • ’~ n 1  in time t(n). Using Le~ na 3.1, we take

u4 i f O � j < a
V —

v i f n � j < 2 n
j -n

and the result follows . U



3.5

Corollary 3.1

With the notation of Lemma 3.3,

(3.17) t(n) — 0(COMP2
(n)).

Proof

This follows from Lemma 3.3 , the definition of COMP2(n), and the fact

that MUI.T(n) — 0(COMP(n)). *

Corollary 3.2

If ord(F) — 1. and f~ ~ 1 for a — 1,2 ,..., then we can compute the fi:st a

coefficients, 50’•
~~ ’

5a I of the Schroeder function S(x) satisfying (3.1) in

time 0(C(~~P2(n)).

Proof

We solve a special case of (3.3), namely

(3.18) (P(x)/x)W(P(x)) — f1W(x ) — 0 ,

to obtain w0,...,w~_ 2 by the method of Lemma 3.3. Then S(x) — xW(x)

satisfies (3.1) mod x~ , so — 0 and s~ — w~~ 1 for .j — l ,..., n— 1. U

Theorem 3.1

Assi e ord (F) — 1, f~ ~ 1 for n — 1,2 ,... . Let f~ be defined and let

(3.19) G(x) —

Then g
~
, ,

~~~~~
- ~ 

can be computed in time

(3.20) 0(COMP2
(n) + P~JER(q)).



3.6

Proof 
n-i

Using the method of Corollary 3.2 , we compute S~~ 1(x) ~ s~ x~ such

that 
~l ~ 0 and i ’

(3. 21) S~ _ 1 (F(x) ) — f 15 1(x ) + O(x~)

in time O(COMP2(n)). Now

(3.22) S~~1
(G (x) ) — f

~
Sn_i (X) +

and thus

(3.23) G(x) — S~ ~] (f ~~ 1(x)) + O(x~).

Using the method of Brent and Kung [76], we can compute S~~~~(x) mod x
X
~ in

t ime O(COMP(n) ) — 0(Ca4p
2

(a)), and the g0,...,g 1 are obtained from (3.23)

in time COMP(n) . The result folLows . U

Remark 3.2

The condition f~ ~ 1 is necessary so that the divisor in (3.13) is non-

zero. Thus, we need only assume that f~ ~ I for m ’l,2,... ,n-2. f F is a formal

power series over a finite field with characteristic p, then it is necessary

to assume n~~~p. U
The prccfs above are constructive and give the following two algorithms.

_ _ _- - - -- -- .

- ~~~~~~~~



3.7

Algorithm 3.1

The algorithm ~(A ,8,C,F,W ,m) finds w0
,...,w 1 such that W(x) satisfies

(3.3). It is defined recursively by:

If m — 1. then ruse equation (3.12) to define w
0
) else

[a ’- rw~i~

Compute R using equation (3.15);

Compute Z using equation (3. 16);

For .1 0 step I until n-l do [w
1 

u
1
; w~~1 

— v~fl. I

Algorithm 3.2

The following algorithm computes G(x) — F~~
1(x) if the conditions of

Theorem 3.1 apply:

1. Take A (x) — F(x)/x, B(x) — f 1, C (x) — 0 and find w0,...,w 2 such

that W(x) satisfies (3.3) by applying ~f(A,B ,C ,F ,W ,n— l) (see Algo-

rithm 3.1).

2. Let — 0, s~ — w1_ 1 for j — l,...,n—1 , and compute S~~~~(f~S(x)) mod

using the composition and reversion algorithms of Brent and Kung [76].
U

__________ - TT~’~~~- -
~~ 

-
~~~~~~

—
~~~~~
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4.1

4. MULTIPLIER ZERO

In this section we study the case f 1 — 0. Since the problem is trivial

if F( x) a 0 , we can assume ord(F) — k, l < k ~~ ~~~~. We define auxiliary power

series S(x) by

(4.1) S(F(x)) — fk(S(~c))
C
,0r~i (S) — 1, s

~
— I.

This reduces to Schroeder ’s equation (3.1) if k — 1. By induction on q we

have, for all positive integer q,

(4.2) F~~~ (x) — S
[_l)

(f
(1
~
(_ l )/OI_ l)CS(x)]k 3

Remark 4.1

The restriction to positive integer q is essential here. For example,

take P — x3. Then F~~
-
~ does not exist as a power series for q — -1 or q ~ 1/2. ~

The following lemmas reduce the solution of (4.1) to problems solved in

the previous section.

Lemma 4.1

If ord(F ) — k > 1 the equation

(4.3) W(F(x) ) - kW (x) + [(k- l) + lnrF (x)/ (f kxk) 3~~ 
— 0

has a solution W(x), and w
0
,...,w 1 can be computed in time O(COMP 2 (n ) ) .

Proof

Lemmas 3.1 to 3.3 are applicable to (4.3), so W (x) exists and

can be computed in t ime O(C~ 4P2 (n)) by the method used in the

proof of Lemma 3.3. U

- —~~~~~~~~~~~~~ -----

-- ~~~~~~~~~~~ 
_ _.±1 . -  
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4.2

Lemma 4.2

If ord(F) — k > I and W(x) satisfies (4.3), then

(4.4) S (x) — x exp(W(x)- l )

satisfies (4.1).

Proof

Substitute W (x) — I + ln(S(x)/x) in (4.3) . From (3.12) , w0 — 1, s~ S(x)

is a power series. I

Using the algorithm of Brent [76] we can compute the first a coefficients

of 

[5(~)/~ ]
k~ 

—

~~~q 
11k 1in time 0(MULT (n)) once w0,...,w 1 are known. We can also compute f~~ 

- -

in t ime ~~~~~~~~~~~~~~~~~ Then, using a slight modification of the composi-

tion and reversion algorithms of Brent and Kung [76] we have:

Theorem 4.1

Assume ord(F) — k ~> 1, q � I is a positive inceger, and

(4.5) G(x) —

Then g0,...,g 1 can be compu ted in time

(4.6) O(COMP2(n) + P~~ER((k~_l)/ (k—I))). U

.4
1*

i 
— 

~~
-. 

~~~
—-—

~~ 

—

~~~~

.-
-

-

~~~

- 
-
. - -
~

--1 
~~~~~~~~~~~~~~~~~ 
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5.1

5. MULTIPLIER UNITY

Now we cectsider the case that the multiplier f1 is equal to unity. We

define an auxiliary function T by

(5.1) T(!(x)) P’(x)T(x), ord(T) — ord(P(x)-x).

T(x) exists and is unique up to a scaling factor (Kuczma [68, Lemma 9.4]).

Let G(x) — F~~~(x). Then we show below that G (x) may be computed from the equation

(5.2) T(G (x) ) — G’ (x)T(x).

Remark 5.1

T may also exis t if f 1 ~ 1. If F is such that the Schroeder function S

exists, then T(x) — cS(x)/S’(x), where c is a nonzero constant. I

Example 5.1

If P (x) — 2x+x2 , then S (x) — In(l-i-x) , T(x) — (1+x)ln(l+x) , F~~
1 (x) — (l+x) -1.

If F(x) — x/(l-x), then T(x) — x
2
. U

Although we wish to solve the functional equation (5.1), as before we

need to embed (5.1) in a more general equation. Throughout this section we

define 4 by P (x) x+f dx
” + 

~~~ ~d ~ 0, and let k be any integer greater

than d. Then we shall solve

(3.3) x
l
~~[(P (x)/x)

k
Y(P(x)) — f’(x)Y(x)] — A (x) — 0

for Y(x).

Lemma 5.1 gives the bas is for a “divide and conquer” algorithm for solving

(5.3). Lemma 5.2 gives sufficient conditions for the existence of a formal solution , 

~~~~~—.- 

~~~ - - 

-
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and Lemma 5.3 gives an upper bound on the time required to compute an

approximate solution . Lenmia 5.4 establishes (5.2) and gives a sufficient

condition for G to be uniquely defined.

Lemma 5.1

Let n, p be non—negative integers. If

(5.4) x
d
[(F(x)/x)

k
u~~(x) - P’ (x)U(x)) - A(x) x’~R(x)

and

(5.5) x
d
t T(x)/x)

k
~~V(P (x) ) - F’ (x)V(x)) + R(x) — O(x~) ,

then

(5.6) x~~~[(P(x)/x)~~l(P(x)) - F’(x)W(x)] - A (x) - O (x~~~)

where

(5.7) W(x) U(x) + x~V(x)

Proof

By direct substitution. Note that since F(x) — x + + the

terms in square brackets in (5.4) to (5.6) have ord � d-l.

Lemma 5.2

There is a formal power series Y(x) such that

(5.8) ~~~~~~~~~~~~~~~~~~ - F’(x)Y(x)] — A (x)

Proof

We shall construct y0,y~,... such that 7(x) 
— ~~y1

x1 satisfies (5.8).

Recall our assumption that k > d — ord(P(x)-x). Take
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(5.9) yo (k-d)f
4

and let

(5.10) Y~ (x) — L y~x-~
1—0

Thu s

(5.11) x~~
’
~[(F (x)/x) ’

~y 1(F( x) )  - F’ (x)Y 1(x)] 
- A(x) —

is true for a — 1 (where R~ is some power series). Define

-R~ (0)(5 12) — _ _ _ _ _ _

a (k+n-d) f 4

for a ~ 1. Using Lemma 5.1 wi~ i p — 1, it is straightforward to prove that

(5.11) holds for all a � 1, by induction on a. Thus , the result follows. I

Lemma 5.3

Suppose that y~,...,y 1 can be found in time t2(n) whenever the condi-

tions of Lemma 5.2 apply. Then

(5.13) t
2

(2n) ~ 2t~(n) + COMP(2n+d-l) + O(NULT(rt)).

Proof

In time t2(a) we find ~~~~~~~~~~ such that (5.4) holds for some power

ser ies R(x) , if U(x) — 

n~ l 
ujx

i. Compute U~~ (x) ) mod x2~~~~~ and then

a 1—0
R(x) mod x from (5.4) . Then find ~~~~~~~~~~ such that V (x) satisfies (5.5)

with p — a (this takes t ime t2(n) + O(MULT (n))). From Lemma 5.1 we can take
U , i f 0 � j < n

7 1 —

ifn~~~j<2a

— .__  _ _-  _ _ _ _ _
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so we get 
~0’~~

.’72nl in time 2t2(n) + COMP(2n+d-l) + O(MULT(n)) as

required.

Corollary 5.1 -

With the notation of Lemma 5.3, t2(n) 0(COMP2(nfl. U

Corollary 5.2

There exists a formal power series T(x) such that ord(T) — d and

(5.14) T(P (x) ) F ’(x)T(x) .

Moreover , ~~~~~~~~~ can be found in time 0(CCt4P
2(n)).

Proof

(5.15) If A(x) — ~ 
2d [p ,(x) xd 

-~~‘(x~~
’t] — ( f f 2) +

and

(5.16) x~~
4
[(F(x)/x) Y(F(x)) — F’(x )Y(x)] — A(x)

then

(5.17) T(x) d 
+ x~~~Y(x)

satis fies (5.14). Thus, the result follows from Lemma 5.2 and Corollary

5.1. U

L.s a  5.4

Let q be an integer , T satisfy (5.14) , and

(5.18) G(x) — Ft
~~(x).

Then

(5. 19) T(G(x) ) — C’ (x)T(x),

-a
_ _ _ _ _ _ _ _  - —v--

-

- —
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and the power series G(x) is uniquely determined by (5.19) and the condition

(5.20) ord(G(x) - x - qf4x
d
) > 4.

Proof -

It is easy to prove (5.19) by induction for positive q, and the result

for negative q then follows. It is also easy to prove by induction that

(5.20) holds if C is defined by (5.18) . From Lemma 9.4 of Kuczma [68] the

solution of (5.19) satisfying (5.20) is 4nique, so the result follows . I

Once T(x) is known, we can solve (5.19) for G(x), using the “initial

condition” (5.20). Since (5.19) is a nonlinear differential equation for C,

we can use a Newton- type me thod as described in Brent and Kung [76) .  The

algorithms are given below. First we summarize the result:

Theorem 5.1

Assume f 1 — I and let C F~~~ (x) . Then g0 ,...,g 1 can be computed in

time O(CC*1P2 (n) ) .

Proof

First find t4,...,t 1 such that T(x) satisfies ~~.l). as in Corollary

5.2, in time O(C~ 4P2(n)). Then solve (5 .19) and (5.20) by Algorithm 5.3

below ( in t ime O(COMP(a) ) to find g0, . . .,g 1. I

Remark 5.2

Note that q need not be an integer in Theorem 5.1. Kuczma [68, Theorem
9.15] considers the question of when F~~~(x) is analytic . See also Baker [64]

and Szekeres [64]. I

_  - 
- - -  - -
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Algorithm 5.1

The algorithm ~8(A ,F,Y,k,d,n) finds 70’” ’7n-t such that Y(n) satisfies

(5.8) . It is assumed that a > 0, a0,...,a 1 and f
1
,..., 

~d l  are given ,

and that the conditions stated after Example 5.1 are satisfied. ~ (A,F,Y, k,d,n)

is defined recursively by:

If a — 1 then (define y0 by (5.9) 3
else (p ‘- rn/21;

~ (A,F,U,k,d,p);
d+2p- ICompute U(P(x)) mod x

Compute R(x) mod xt’ from (5.4) with a replaced by p;

~(—R,F,V,k+p ,d ,p);

For j 0 step 1 until j-1. do

&1
’-u

1
; y~÷1~ -v 1

fl. I

Algorithm 5.2

The algorithm ~(P,T,d,n) finds t4,...,t1~_ 1 such that T(x) satisfies (5.14).

It is assumed that are given and that the conditions of Corollary

¶ 5.2 are sacisfied.

Y ’- O; T~~~0;

if a > d+I then (compute A (x) mod xh 1 d l  from (5.15);

e(A,F,Y,d+I,d,n— d-I);

For J d+l until a-i do t
1 ~j-d-l~~

I
I

~~~~~~~ ~~~~~~ - :-
~~~~~~~

_ 
- .
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Algorithm 5.3

The following algorithm computes 
~
O’..

~ ’~~~l’ 
such that G(x) a F~~~(x).

It is assumed that 
~~~~~~~~~ 

have been computed using Algorithm 5.2.

G - x + q

k — 1;

while k+d <a do

— miri (2k ,n-d) ;
T(G(x))-C’ (x)T(x) mod

x T(x)

— 
d 

- 
T’kG(x)) mod

x T(x)

E exp~~
C 
U (7)d~
) 

mod x1
~~~;

V r E(y)R(y)dy mod xk;

G ’- G + x 4V mod x~~~). I

Remark 5.3

It can be verified that all the quantities appearing on the lefthand

sides in Algorithm 5.3 are indeed power series.
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6 • MULTIPLIER NONTRIVIAL ROOT OF UNITY

— 

In this section we consider the only remaining case: f1 ~ 1, f
’
~ I for

some integer in > 1. By Remark 3.2 we may assume in � n-2. We also assume q is an

integer.

Remark 6.1

The restriction to integer q is essential here . For example , let

F — -x + x
2 

+ x
3
. There is no formal power series for Ft1~

”2] (x). That is ,
r 2 ]

there is no power series G(x) such that G’ (x) — F(x) (Xuczma [68, p. 304 1) . U

In what follows we shall use the following algebraic relations:

(6.1) F~~
’
~~~(x)

(6.2) Ft
~~

2 (x) — R~~~(x) , where R (x) —

for integer p, q. If q is negative we compose ~
[ I]  instead of F, so without

loss of generality we may assume that q is positive. Let

(6.3) q m r + s ,

where r � 0 , 0 � s < m. We can evaluate M F [m] 
— x + ..., and F~~1 by the

obvious “squaring” method in time O(COMP(n) lg m) — O(COMP(n) lg a).  Thea ,

using the method of Section 5, we can evaluate ~~~~~ ~~~ in time

O (CC*1P2(a)). Finally, ~~~ ~t (7t5 ]) may be evaluated by performing one

composition. (An additional reversion is required if q < 0.) Thus we have

established

Theorem 6.1

Assume ord(F) — 1, f ~ 1, ~m 
— 1 for some m such that 1 <si ~ n-2 ,1 1
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q integer, and let G — ~~~~ Then g1,... ,g 1 can be evaluated in time

O(COMP(n) lg in + COMP
2(n)).

Remark 6.2

If A is the real field (so the only roots of unity are ± 1) then Theorem

6.1 shows that g 1,....,g 1 can be evaluated in t ime O(COMP,(n)). U

-- —~
-

~~~

-

~ 

- -“ s - ~~~~~~~ ~~~ - 
—
~ . -—- -  -— - -  ---—-
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7. SUMMARY AND OPEN PROBLEMS

From Theorems 3.1, 4.1, 5.1, and 6.1 we have

Theorem 7.1

Let F(x) be a formal power series, ord(F) � I , and let G (x) — Ft~~ (x).

If q satisfies the following conditions:

(i) If or d(F ) > 1, then q is a positive integer;

(ii) If the multiplier f1 is a nontrivial root of unity , then q is

an integer ;

(iii) f~ is defined;

and if f~ is given , then 8l’•~~•’8n can be computed in time O(COMP2(n) ) and

this bound is independent of q. U

Different defining equations are used for the various cases we have had

to consider. For the reader ’s convenience we st arize them here . As before ,

G Fk].

I. Regu lar case: f 1 ~ 0 , f~ ~ I , m — 1,2 ,... . Define S by

S(F (x)) — f 1S(x), ord(S) I. Then C(x) St 1
~ (f~S(x)).

~~~~. f — 0. Define $ by S(7(x)) — f (S(x) ) k , ord(S) — 1, a — I.

Then G(x) ~[—l] {f (k _ 1)/(k
~

1) ($(x) 3
k }

III. f1 — 1. Def ine T by T(F(x) ) — F’(x )T(x), and ord(T) ord(F(x)—x).

Then determine G(x) from T(G(x)) G’ (x)T(x).

IV. f 1 ~ 1, f~ — 1 for some integer si > i. This can be reduced to

case III.

iLI T - - i-~~--~~~~~~——-— —.‘_--
- -

~~__i~, ~~~ ,- - - 
-
- - - - - 

~~ _~~~~~
_ -:__~ 
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It is possible to compute C using the same functional equation for

cases I—Ill. Define U(x) by

(7.1) U (F (x ) ) _ 
F’(x) U(x), ord (13(x)) ord (F(x)—x).
or d(F)

13(x) exists and is unique up to a scaling factor. In fact, in cases

I and LI we have

(7 .2)  13(x) a c S(x) /S ’ (x) ,

and in case III we have 13(x) — c ’ T( x ) ,  for some non—zero constants

c and c’ . Also , it is easy to prove that C satisfies

(7.3) TJ ( G(x) ) — 
C’ (x) U(x).
(ord(F) ]q

Al though a unified treatment of cases I—Ill using (7.1) and (7.3)

would be possible , it is simpler to use the Schroeder function S(x) of

(3.1) in case I and the generalized Schroeder function of (4.1) in case

II , for then C is given explicitly by (3.23) or (4.2) instead of implicitly

as a certain solution of (7.3). Also, in proving properties of algorithms

for the computation of G by either method, it is natural to consider

cases I—Ill separately .

The techniques of Sections 3 and 5 can be applied to far more

general nonlinear functional equations. We shall report on this

elsewhere .

To conclude we list some open problems suggested by the results of the paper.

1. If the field A is such tha t MULT(n) — O(a lg n) thea the fastest algo-

rithm known for composition is O((a Ig ~)3/2)~ No nontrivial lover bound

is known.

_ _ __ I
- 
-

-~~~~~~ - - - - ~~~~~~~~~~~~~~~ -~~~~~- - - - r ~ o~ - — 
- - - -
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a. Is composition harder than multiplication? (It  is at leas t as hard.)

b. Although there are only a inputs and a outputs , the best uppe r
3/2bound known is O((n ig a) ) .  This is comparable to matrix

multiplication w~iere there are 2n 2 inputs and a2 output s but the

best upper bound known is O(n~~ 
7 )~ Can the Brent-Kung upper

bound oe reduced?

C. Is ~~~ > 1 in the notation of (2.5)? An affirmative answer would

show that COMP2 (n) O(COMP (n)) .

2. Brent and Kung [76] showed that , for the reversion problem R(x ) a

the complexity of computing R~~(x) is O(COMP(n)). Consider computing

Rn
(X

O) for a scalar a. This problem has n inputs and one output. Brent

and Kung [76 3 showed its complexity to be O(MULT(n)). If G (x) —

what is the complexity of computing G(x
0)? Is it less than the complexity

of computing G~ (x)?

3. Wha t are the numer ical properties of our algorithms? For example , we
expect the computation of the Schroeder function to be ill—conditioned

if f~ Li close to I for some si ~ n—2; see (3.13). Cherry [64 ] discusses

this problem in conjunction with a problem in dynamical systems.

4. What are th. complexity bounds for exact arithmetic over the rational field?

t
-j -, -. 

~~~ 
- 

‘*~~— 
- ______ -s-___

—— — - -- -—--- -— - — - — ——-—‘---- — ~~~~~~~~~~~~~~~~~~~~~~~~ 
-
- 

-
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q times that of a single composition. Brent showed that the factor log2 

q

can be eliminated in the computation of the first a terms of (~~(~~))~~ by a
- -a~ -~ ~~~~~~~~~

change of representation, using the Logarithr. and exponential functions. We
- show the fac tor log2 q can also be eliminated for the composition problem.

— F4.~~(x) can often, but not always, be defined for more general q.

r~ ‘ We give algorithms and complexity bounds for computing he first a terms of

( yC.5Zx) whenever it is defined. ~~~~~~~~

We conclude the paper with some open problems.
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